3,235 research outputs found

    Duality and Effective Conductivity of Two-dimensional Two-phase Systems

    Full text link
    The possible functional forms of the effective conductivity sigma_{eff} of the randomly inhomogeneous two-phase system at arbitrary values of concentrations are discussed. A new functional equation, generalizing the duality relation, is deduced for systems with a finite maximal characteristical scale of the inhomogeneties and its solution is found. A hierarchical method of the construction of the model random inhomogeneous medium is proposed and one such simple model is constructed. Its effective conductivity at arbitrary phase concentrations is found in mean field like approximation. The derived formulas for the effective conductivity are different and also (1) satisfy all necessary inequalities and symmetries, including a dual symmetry; (2) reproduce the known formulas for sigma_{eff} in weakly inhomogeneous case. It means that in general sigma_{eff} of the two-phase randomly inhomogeneous systems may be a nonuniversal function and can depend on some details of the structure of the randomly inhomogeneous regions. The percolation limit is briefly discussed.Comment: 16 pages, latex-2e, 4 figures (3 eps-files added), small correction

    Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes

    Get PDF
    An improved method is given for the computation of the stress-energy tensor of a quantized scalar field using adiabatic regularization. The method works for fields with arbitrary mass and curvature coupling in Robertson-Walker spacetimes and is particularly useful for spacetimes with compact spatial sections. For massless fields it yields an analytic approximation for the stress-energy tensor that is similar in nature to those obtained previously for massless fields in static spacetimes.Comment: RevTeX, 8 pages, no figure

    Quasi-1D dynamics and nematic phases in the 2D Emery model

    Full text link
    We consider the Emery model of a Cu-O plane of the high temperature superconductors. We show that in a strong-coupling limit, with strong Coulomb repulsions between electrons on nearest-neighbor O sites, the electron-dynamics is strictly one dimensional, and consequently a number of asymptotically exact results can be obtained concerning the electronic structure. In particular, we show that a nematic phase, which spontaneously breaks the point- group symmetry of the square lattice, is stable at low enough temperatures and strong enough coupling.Comment: 8 pages, 5 eps figures; revised manuscript with more detailed discussions; two new figures and three edited figuresedited figures; 14 references; new appendix with a detailed proof of the one-dimensional dynamics of the system in the strong coupling limi

    Condensate fluctuations of a trapped, ideal Bose gas

    Get PDF
    For a non-self-interacting Bose gas with a fixed, large number of particles confined to a trap, as the ground state occupation becomes macroscopic, the condensate number fluctuations remain micrscopic. However, this is the only significant aspect in which the grand canonical description differs from canonical or microcanonical in the thermodynamic limit. General arguments and estimates including some vanishingly small quantities are compared to explicit, fixed-number calculations for 10^2 to 10^6 particles.Comment: 16 pages (REVTeX) plus 4 figures (ps), revision includes brief comparison of repulsive-interaction vs. fixed-N fluctuation damping. To be published in Phys. Rev.

    Simulation of a stationary dark soliton in a trapped zero-temperature Bose-Einstein condensate

    Full text link
    We discuss a computational mechanism for the generation of a stationary dark soliton, or black soliton, in a trapped Bose-Einstein condensate using the Gross-Pitaevskii (GP) equation for both attractive and repulsive interaction. It is demonstrated that the black soliton with a "notch" in the probability density with a zero at the minimum is a stationary eigenstate of the GP equation and can be efficiently generated numerically as a nonlinear continuation of the first vibrational excitation of the GP equation in both attractive and repulsive cases in one and three dimensions for pure harmonic as well as harmonic plus optical-lattice traps. We also demonstrate the stability of this scheme under different perturbing forces.Comment: 7 pages, 15 ps figures, Final version accepted in J Low Temp Phy
    • 

    corecore